

harang Quarterly Newsletter

Events & Activities

Research Spotlight

Partnership Stories

Lab Visits

Signed MoU with SSDMA: To Strengthen Community Resilience

In a strategic move to enhance disaster preparedness and community resilience in one of India's most environmentally vulnerable regions, Amrita Vishwa Vidyapeetham has signed a Memorandum of Understanding (MoU) with the Sikkim State Disaster Management Authority (SSDMA). The MoU continues a comprehensive collaboration focused on disaster risk reduction, climate resilience, and sustainable community development in the Eastern Himalayas. It was signed on May 10, 2025, by Shri Prabhakar Rai, Director of SSDMA, and Dr. Maneesha Vinodini Ramesh, Director, Amrita WNA. As part of the MoU, Amrita will support SSDMA in rolling out large-scale capacitybuilding programs, field-based awareness campaigns, and grassroots resilience initiatives. The university will deploy digital platforms, multilingual educational tools, and advanced wireless sensor networks to strengthen early warning systems and real-time disaster communication in remote

regions. Together, Amrita and SSDMA will co-develop sustainable, inclusive, community-driven strategies for managing natural disasters—an essential effort in Sikkim, which faces frequent risks from earthquakes, landslides, and flash floods. The MoU signing ceremony was attended by key officials from the Government of Sikkim, including Mr. M.T. Sherpa, IAS, Relief Commissioner-cum-Secretary of the Land Revenue and Disaster Management Department, Shri Prabhakar Rai, Shri Rajiv Roka, Additional Director of SSDMA, and Mr. Keshav Koirala, Training Officer at SSDMA. Delegates from Amrita WNA included Nitin Kumar M, Hari Chandana, and Bichu B.K. Raman.

"God will definitely come to our aid when we develop the right attitude with patience, determination, faith, and self-confidence."

Sri Mata Amritanandamayi Devi, Chancellor, Amrita Vishwa Vidyapeetham

Tharang

Events & Activities

Discovering the Vibrant Beat of Our Research Community Through an Overview of Our Events and Endeavors.

ARISE 2025

AmritaWNA participated and delivered different ideas, shared research strategies in the The Amrita Research and Innovation Symposium for Excellence (ARISE 2025) commenced at Amrita Vishwa Vidyapeetham's Amritapuri campus. This five-day international symposium, designed to foster groundbreaking research and interdisciplinary collaboration, was inaugurated with a keynote message from Chancellor, Sri Mata Amritanandamayi Devi (Amma), emphasising

the role of compassion, perseverance, and societal contribution in scientific advancement. Dr. Maneesha V. Ramesh, presented an overview of the university's research ecosystem, detailing its E7 framework for excellence and commitment to sustainable, compassion-driven innovation. Dr. Venkat Rangan, Vice Chancellor, further emphasized the need for socially responsible research and the university's expanding global collaborations.

2

Amrita Center for Wireless Networks and Applications

Unveiling Innovations from Amrita WNA at ARISE

In the vibrant and dynamic atmosphere of ARISE, the stall hosted by the Amrita Center for Wireless Networks and Applications (WNA) stood out as a hub of innovation and technological excellence, attracting a steady stream of visitors and dignitaries alike. The WNA stall featured a diverse range of solutions across disaster management, healthcare, and antenna systems. One of the key attractions was the Landslide model, which offered a compelling demonstration of how WNA's realtime monitoring technology is helping to mitigate disaster risks in vulnerable regions.

4

In the healthcare segment, AMRITA SPANDANAM stole the spotlight. This low-cost, lowpower wearable ECG-monitoring framework has been specially designed to serve cardiac patients in remote and underserved areas. Another innovative highlight was the 5-in-1 health monitoring device, a compact solution designed to track Diabetes and Cardiac health parameters. This all-in-one diagnostic tool has the potential to transform primary healthcare delivery, especially in rural and remote communities. WNA also displayed antenna models developed as part of their advanced RF and wireless communication research, offering insights into the design and optimization of antenna systems for various applications. Additionally, the MR (Mixed Reality) corner captured the imagination of visitors with interactive Temple and Heart models. These immersive demonstrations provided an engaging, educational experience that combined technology with cultural and biomedical visualization. The showcase at ARISE not only reflected WNA's multidisciplinary research expertise but also its commitment to deploying technology for social good.

Director Represents Amrita: World Summit On Disaster Management (WSDM) 2025

Dr. Maneesha Ramesh participated as a Special Guest at the 3rd Pre-Summit of WSDM 2025, organized by the Uttarakhand Council for Science & Technology (UCOST), Govt. of Uttarakhand. Hosted at JNCASR, Bengaluru, the summit focused on "Technology for Climate & Disaster Resilience."

Speaking on "Science and Technology for Survival," Dr. Maneesha Ramesh emphasized the necessity of a compassionate, humancentric approach to disaster management. Inspired by Amma, Sri Mata Amritanandamayi Devi, Amrita's landslide early warning systems now safeguard communities across India's Western Ghats and Northeast regions, utilizing advanced AI and sensor technology.

Dr. Maneesha shared how, guided by Amma's vision, Amrita engages with over 2200

communities nationwide, empowering local solutions and providing 100 PhD scholarships for women researchers dedicated to sustainable development.

Dr. Maneesha V. Ramesh and WNA Faculties Honored with Amrita Innovation & Research **Awards**

Dr.Maneesha V Ramesh, Director of Amrita center for Wireless Network & Application received AIRA Awards. Also twenty above faculties and researchers received the award for their research projects and publication. The 3rd edition of the Amrita Innovation & Research Awards (AIRA) 2025 unfolded in a spectacular ceremony at Mata Amritanandamayi Math, honoring extraordinary scientific achievements and groundbreaking research from across Amrita Vishwa Vidyapeetham. The prestigious event was graced by Dr. V. Narayanan, Chairman of ISRO and Secretary, the Department of Space, who served as Chief Guest. Widely celebrated for his leadership in developing India's cryogenic propulsion systems, Dr Narayanan delivered the keynote address, applauding Amrita's unique integration of scientific innovation with humanistic values. This year's AIRA ceremony recognized 27 outstanding scientists and researchers from Amrita featured in Stanford University's elite list of the world's top 2% of scientists. In total, winners across various categories received nearly ₹8 crores in cash awards, along with plaques and certificates of recognition for their excellence across diverse fields of science, technology, and innovation.

Empowering Communities: Water Quality Awareness Workshop

8

A community awareness workshop was successfully organized at Kulasekharapuram Grama Panchayat as part of the DST-funded GeL: IoT project. The initiative aimed to educate local residents on water quality, safe drinking water practices, and the health risks of contamination. Led by Dr. Aryadevi R.D., Divya S.J., Dr. Sani, Krishnendu, and Sretha from Amrita WNA, the workshop featured an interactive session on common pollutants like iron and water hardness, their health effects, and prevention methods.

Participants were actively involved in discussions and hands-on demonstrations using field test kits. They learned to collect samples, perform basic tests, and interpret results-empowering them to monitor water quality in their surroundings. The visual analysis of test outcomes helped the community grasp contamination patterns. Strong engagement and positive feedback reflected a keen interest in continuing such initiatives, laying the groundwork for sustained community-led efforts in water safety and public health improvement.

Amrita WNA Showcases Innovations at VIDYUT 2025

AmritaWNA participated in VIDYUT 2025, the nationallevel inter-college multi-fest at Amrita Vishwa Vidyapeetham, with a vibrant stall showcasing its multidisciplinary research across disaster management, healthcare, and antenna systems. A key attraction was the Landslide Model, demonstrating WNA's real-time monitoring system for disaster risk mitigation in vulnerable regions. Visitors from Amrita and other colleges enthusiastically engaged with the Mixed Reality (MR) experience, interacting with immersive Temple and Heart models. In the healthcare segment, AMRITA SPANDANAM, a lowcost, low-power ECG wearable for remote cardiac care, gained significant attention. The 5-in-1 health monitoring device, designed for diabetes and cardiac health tracking, also impressed as a compact diagnostic tool for underserved areas. WNA's antenna system prototypes, developed under advanced RF and wireless research, offered technical insights into modern communication applications.

The stall reflected AmritaWNA's commitment to integrated, impactful research and inspired many students to explore realworld problem-solving through technology.

Field Visit Field visit and soil sample collection in Bhavani basin

A dedicated team of researchers from Amrita WNA recently conducted field trials in Sikkim to carry out ADCP (Acoustic Doppler Current Profiler) measurements on the Teesta River, one of India's fastest-flowing rivers. One of the most critical parameters for hydrological modeling-discharge (streamflow)-requires highly accurate in-situ data. To obtain this, the team deployed the ADCP at selected cross-sections of the Teesta River.

The mission was far from easy. During the early monsoon season, the rugged terrain of Sikkim and the fierce flow of the Teesta presented serious operational challenges. Researchers had to string ropes across the river and manually guide the ADCP unit from one bank to the other. On several occasions, the device was overturned by the strong current, and the ropes snapped under the strain. Despite these setbacks, the team persevered. Harichandana, Nitin Kumar, and Bichu successfully conducted multiple ADCP measurements under these tough field conditions, demonstrating commendable commitment and resilience.

People Spotlight

Recognizing the exemplary research achievements and accolades earned by our researchers in the recent threemonth period

Inotropes Control," has been recognized for its innovation and societal relevance. Vidya's work addresses dosage errors in infusion pumps for patients receiving inotropes—life-supporting drugs used to stabilize cardiac function. Her project proposes AI-enhanced infusion control algorithms combined with digital twin cardiac models that simulate real-time patient-specific

INSPIRE Fellowship for Research on AI-Based Cardiac Care

Vidya S. Nair, Ph.D. scholar at Amrita WNA, has been awarded the INSPIRE Fellowship by the Department of Science and Technology (DST), Government of India. Her research, titled "Towards Personalized Cardiac Care: Design and Development of AI-Enhanced Digital Twin Models for Single and Multiple

responses. By clustering patients based on drug response variability, the system designs clusterspecific AI decision models to recommend optimal infusion rates, which are validated using digital twin models to ensure personalized and accurate drug delivery. She is pursuing her Ph.D. under the guidance of Dr. Rahul Krishnan, Assistant Professor at Amrita WNA.

Dr. Alka Singh Awarded IGSTC 2+2 Grant

Dr. Alka Singh, Assistant Professor at Amrita Center for Wireless Networks and Applications, has been awarded a significant research grant under the Indo-German Science & Technology Centre

(IGSTC) 2+2 program. The grant is jointly supported by the Department of Science and Technology (DST), Government of India, and the Federal Ministry of Education and Research (BMBF), Government of Germany. She will collaborate with Dr. Carsten Montzka from Forschungszentrum Jülich, Germany, on a pioneering project titled "AI-based Quantification of Availability and Sustainability of Renewable Energy and Groundwater for

Irrigation across India (AQUASURGE)." The project has been selected for funding with a total grant of approximately ₹7 crores.

The AQUASURGE project aims to enhance understanding of the interdependence between groundwater sustainability and renewable energy availability, particularly solar and wind energy, for irrigation in India. By leveraging artificial intelligence, the research will integrate environmental data with groundbased measurements to forecast and optimize use of local water and energy resources. The work is expected to contribute significantly to the development of sustainable agricultural practices and informed resource management across the country.

NEW JOURNAL PUBLICATIONS

Velayudhan, Nibi Kulangara, Aryadevi Remanidevi Devidas, and Dragan Savić. "Generative Al for Spatio-temporal Multivariate Imputation and Demand Prediction in Water Distribution Systems." Results in Engineering (2025): 106178.

Jayakrishnan, V. M., RV Sanjika Devi, and Dhanesh G. Kurup. "Design and Development of a Metamaterial Enhanced Microstrip Antenna Integrated with a Monopulse Comparator for Tracking Applications." IEEE Access (2025).

Nair, Bhuvana, A. P. Praveen, Ignacio Gil, M. P. Hariprasad, and Sreedevi K. Menon. "Adaptable gauge length extensometer using coplanar waveguide fed extended monopole antenna." IEEE Sensors Journal (2025).

Lekshmi, G. S., Aryadevi Remanidevi Devidas, Raji Pushpalatha, Byju Gangadharan, and K. M. Hariprasad. "Enhancing coconut yield potential: A climatesmart land suitability analysis using machine learning." Smart Agricultural Technology 12 (2025): 101087.

Nair, Vidya S., GD Heshan Niranga, C. S. Aryalakshmi, Dipu T. Sathyapalan, Thushara Madathil, and Rahul Krishnan Pathinarupothi. "Optimizing Inotropic Infusion with Cluster Specific AI Decision Models and Digital Twins." IEEE Access (2025).

Forecasting Disasters Before They Strike: Multi-Hazard Preparedness in Sikkim

Sikkim, India - In the shadow of the Himalayas, where rivers roar and mountains shift, a pioneering project is quietly transforming the way we forecast floods and landslides. Spearheaded by Amrita Vishwa Vidyapeetham in collaboration with the Sikkim State Disaster Management Authority (SSDMA), this initiative is setting new benchmarks in climate resilience through advanced multihazard risk modeling. A dedicated team from the Amrita Center for Wireless Networks and Applications-Mr. Nitin Kumar M, Ms. Hari Chandana Ekkirala, and Mr. Bichu B.K. Ramanrecently conducted a critical field mission across the districts of Gangtok, Mangan, Dikchu, and Chungthang under the guidance of Dr. Maneesha V. Ramesh. Their goal: to enhance the region's preparedness by closely examining the physical indicators of impending natural hazards.

Key activities during the visit included a Differential GPS (DGPS) survey to assess surface cracks-an early warning sign of potential landslides-and flow velocity measurements of the Teesta River using advanced hydrological instrumentation. These data points form the backbone of dynamic, heterogeneous models designed to simulate and predict the cascading impact of hazards with unprecedented accuracy. At the heart of this initiative lies a critical mission: to understand, model, and forecast disasters before they strike, enabling early warnings, proactive planning, and, most importantly, the saving of lives and livelihoods. As climate uncertainty intensifies, Amrita's science-driven approach to disaster risk reduction is fast emerging as a national model, offering hope and resilience to vulnerable communities across India's mountainous regions.

Progress In Electromagnetics Research Symposium (PIERS 2025) held from 04-08 May 2025 at Abu Dhabi.

Conference

Dr. Aiswarya and Dr. Meenu L from Amrita WNA actively participated in the Photonics and Electromagnetics Research Symposium (PIERS 2025), held from May 4 to 8 in Abu Dhabi. Both researchers presented multiple papers showcasing their contributions to advanced electromagnetic and photonic technologies. Dr. Aiswarya delivered three oral presentations across various technical sessions. Her papers included "Field and Phase Analysis in Printed Passive RFID Tag for Sensor Application," co-authored with L. Meenu, K. A. Unnikrishna Menon, and Sreedevi K. Menon; "Design and Development of a High Performance

Two-element MIMO Antenna for 5.9 GHz Vehicular Communication," coauthored with Bhavya Babu and Nair S. Bhuvana; and "Metamaterial Based Frequency Tunable mmWave Antenna for Communication Applications," coauthored with R. Budhi Sagar and L. Meenu. Dr. Meenu also presented three papers, with the first two showcased in the poster sessions and the third delivered orally. Her contributions included "Evaluating the Impact of Plant Species on Outdoor Wireless Communication by Analyzing Plant Material Characteristics," and "Modeling Light-tissue Interactions in Finger Phantom Using Near Infrared and Mid Infrared Spectroscopy Based on Non-invasive Glucose Monitoring," coauthored with Yagna Sai Kalyan Rebba and Dr. Maneesha V. Ramesh. Her oral presentation titled "Machine Learning Based Implementation of Antenna Beamforming Algorithm" was co-authored with Liya M. L., Balaji Hariharan, and Dhanesh G. Kurup. Their participation highlighted the center's growing impact in cutting-edge research areas such as wireless communication, biomedical sensing, and intelligent antenna design.

Faculty Participation in Workshop on Groundwater Modelling

Dr. Alka Singh, Assistant Professor at the AmritaWNA, participated in the workshop on Groundwater Modelling using FEFLOW, organized by DHI (India) Water & Environment Pvt. Ltd. The event was held at the National Centre for Earth Science Studies (NCESS), Thiruvananthapuram, Kerala, from June 9-13, 2025. The workshop provided an in-depth understanding of DHI's FEFLOW groundwater modelling software, which is widely used for simulating fluid flow, mass, and heat transport in porous and fractured media. Participants also gained exposure to integrated modelling techniques using DHI's MIKE software suite for river, flood, and urban water systems. AmritaWNA currently utilizes

Tharang

DHI's FEFLOW and MIKE FLOOD software tools to support advanced research in hydrology and water resource management. Dr. Alka Singh shared that the workshop offered valuable handson experience and insights into applying these tools to address real-world hydrological and hydrogeological challenges with precision and efficiency.

Modeling the Earth's Risks: Dr. Aadityan at EGU

Dr. Aadityan Sridharan from Amrita Center for Wireless Networks and Applications presented two abstracts titled "Longitudinal effects of Earthquake induced landslide susceptibility in Papua New Guinea (PNG)" and "A Markov Switching Spatiotemporal GAM for Landslide Hazards in New Zealand" in the European Geosciences Union 2025 (April 27th - May 2nd) that took place in Vienna international centre, Vienna Austria. EGU is one of the most prestigious annual conferences in Europe focused on geosciences, drawing participation from over 20,000 scientists, stakeholders, academicians, and students representing diverse disciplines. Dr. Aadityan's research highlights innovative approaches in modeling landslide hazards and contributes to global understanding and

disaster risk reduction. Beyond his presentations, Dr. Aadityan also engaged with several international experts, forging new academic and research collaborations for Amrita Vishwa Vidyapeetham. His participation not only showcased Amrita WNA's research excellence on a global stage but also strengthened the university's presence in the international geoscientific community.

PhD Scholar Presents Research on FBG Sensors at ICMOCE-2025

Ajish U, PhD scholar under the guidance of Dr. Anand Prem, presented a research paper titled "Assessing Fiber Bragg Grating Sensors for Landslide Monitoring: Current Trends and Future Prospects" at the 3rd International Conference on Microwave, Optical and Communication Engineering (ICMOCE-2025), held from May 23–25, 2025 at IIT Bhubaneswar, Odisha.

ICMOCE-2025 served as a global platform for interdisciplinary research at the convergence of microwave, optical, and communication engineering. The conference brought together experts and researchers to explore emerging technologies in areas such as 6G, photonics, and AI-driven sensing. Ajish's work highlighted the growing role of Fiber Bragg Grating sensors in landslide early warning systems, offering valuable insights into their current capabilities and future research directions.

Amrita WNA Team Conducts Geophysical Investigation in Nainital

Dr. Sabari Ramesh, along with Balmukund and Bichu K. Raman from Center, successfully completed a geophysical field survey in Nainital, Uttarakhand. The field investigation was conducted from June 11 to June 26, 2025, as part of a consultancy project under the Uttarakhand Landslide Mitigation and Management Center (ULMMC). The work formed a key component of ULMMC's broader initiative titled "Geological, Geophysical, and Geotechnical Investigation for Nainital Town," aimed at slope stability analysis, landslide risk assessment, and evaluating terrain suitability for future development. The town of Nainital was divided into 29 survey grids, of which the Amrita team was assigned 13. After an initial assessment to identify technically viable locations, the team carried out electrical resistivity and seismic surveys across approximately 2700 meters, despite challenging conditions including intermittent heavy rainfall. All survey point coordinates were precisely recorded using Differential GPS (DGPS) technology, ensuring high spatial accuracy.

Research Spotlight

B.Tech. Students Reimagine Learning with AI-Powered Assistant 'Inspire-Ed'

In a time when traditional education struggles to meet the evolving needs of modern learners, eight final-year B.Tech. students set out to reimagine the learning experience through Inspire-Ed - a studentcentric, AI-powered educational assistant. Built over 12 months, the platform integrates large language models (LLMs) to provide adaptive support through a structured, pedagogically sound interface. Key features include personalized learning materials based on individual preferences, assessment modules that adapt to performance trends, affective feedback mirroring human tutors, and auto-generated summaries and quizzes to streamline both self-study and teaching workflows. Unlike generic AI tools, Inspire-Ed is grounded in cognitive engagement principles, with an emphasis on metacognition and long-term concept retention. Learners experience a focused, evolving journey tailored to their understanding, while teachers benefit from automated content generation, lesson planning support, and realtime performance tracking - reducing administrative workload without compromising instructional quality. Every system component was intentionally designed to balance scalable automation with human-centered learning. Developed with ongoing input from faculty and students at MES International School, Pattambi, the project ensured practical relevance and usability.

Through disciplined planning, deep work sessions, and hands-on engineering across data pipelines, UI/UX, and model integration, the team produced eight research papers, with two more underway - a remarkable achievement by a purpose-driven undergraduate team. This major project was completed in the final year of their B.Tech. AI program under the guidance of Ms. Sruthy Anand and Prof. Sethuraman N. Rao. The quality of their work is reflected in the exceptional grades secured by the students.

Advancing Lymphedema Diagnosis through **Computational Techniques**

Ph.D. scholar Jayasree K.R., under the guidance of Dr. Rahul Krishnan, conducted a comprehensive study on computational approaches for the diagnosis of lymphedema-a condition characterized by localized swelling due to lymphatic

system dysfunction, commonly following breast cancer treatment. Affecting up to 20% of women post-treatment, early detection is vital to prevent progression and improve quality of life. The review explores emerging diagnostic

Amrita Center for Wireless Networks and Applications

methods including bioimpedance spectroscopy (BIS), Kinect sensor applications, and machine learning (ML) algorithms. BIS demonstrated early detection capabilities as soon as four months post-surgery with 95.4% specificity, while ML models using artificial neural networks achieved 93.75% accuracy, 95.65% sensitivity, and 91.03% specificity. By comparing imaging-based, electrical, and ML techniques, the research identifies promising pathways to enhance diagnostic precision. These technologies hold strong potential to supplement traditional methods and bring accessible, real-time, and accurate diagnostics into routine clinical care.

KS-Entropy Transform for Gait-Based Detection of Neurodegenerative Diseases

Dr. Radhagayathri Udayakumar, Associate Professor, is pioneering research in collaboration with Deakin University on nonlinear gait dynamics for early detection of neurodegenerative diseases (NDDs) such as

Parkinson's and Huntington's disease. Her study introduces the KS-Entropy Transform, a novel non-parametric method that maps gait signal irregularities into a comprehensive entropybased feature space. This approach effectively captures the nonlinear and nonstationary nature of human gait-challenges that traditional

linear methods struggle to address. Unlike earlier entropy techniques dependent on manual parameter tuning, KS-Entropy automatically adapts to the signal structure, enabling robust, explainable classification models like Linear Discriminant Analysis and Logistic Regression. Achieving over 85% accuracy with low data requirements, the model balances precision with interpretability, making it clinically viable. This method, previously applied in cardiac, EEG, and stress signal analysis, now offers a breakthrough in gait-based NDD diagnostics. By quantifying both signal complexity and dynamic changes, it sets a new benchmark for data-driven, early-stage neurodegenerative disease detection.

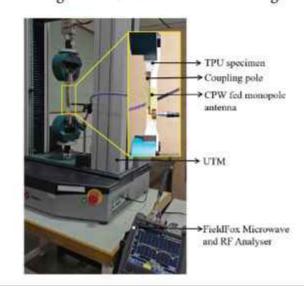
16

Researcher at Amrita WNA Conducts Study on **Electromagnetic Radiation Exposure**

Meenu L., researcher at Amrita WNA, has conducted a comprehensive study on electromagnetic radiation (EMR) exposure from wireless communication devices. With the growing use of smartphones, laptops,

smartwatches, and routers, EMR levels in living and working environments are rising, prompting concerns about potential health impacts. Using an electro-smog meter, the study measured electric and magnetic field intensities emitted by common devices. Findings revealed that

individuals in academic and professional settings, with prolonged exposure, often experience symptoms of electromagnetic hypersensitivitysuch as fatigue, headaches, and body pain. These effects are influenced by frequency, modulation methods, exposure duration, and SAR (specific absorption rate). The research highlights the need for greater awareness of EMR exposure and adherence to ICNIRP guidelines, calling for further experimental validation. Meenu's work adds to the global discourse on radiation pollution, advocating for safer wireless technology use to minimize health risks in everyday environments.


Adaptable RF-Based Extensometer for Strain Sensing

Ms. Bhuvana from Amrita School of Wireless Networks & Applications, along with Sreedevi K. Menon and international collaborator Dr. Ignatio Gill, has developed a novel adaptable gauge length extensometer using a coplanar waveguide-

fed extended monopole antenna. This innovative RF sensor is compact, reusable, and easily mountable, making it ideal for laboratoryscale mechanical testing. Unlike conventional extensometers and resistance strain gauges, which face limitations in gauge length flexibility, installation complexity, and response time, the proposed system introduces a coupling pole

mechanism to achieve adjustable gauge lengths. Strain experienced by the specimen induces a resonant frequency shift, enabling precise correlation with axial strain. Demonstrating a sensitivity of 0.867 kHz/µE with a correlation factor (R2) of 0.967, this system offers high accuracy while addressing challenges of slippage, rigidity, and gauge variability. The research marks a significant advancement in RF-based strain sensing and structural health monitoring.

Alumni Page

Amrita Center for Wireless Networks and Applications

Gayathri S Menon M.Tech WNA 2016-18

My experience at Amrita's M.Tech in AmritaWNA was truly transformative. The program offered a perfect blend of theory and practical exposure through cutting-edge research labs, live projects, and collaborative learning. Being part of real-time deployments gave me the confidence and skills to tackle complex challenges in the real world. The program also opened doors to excellent placement opportunities, and I was fortunate to receive a strong offer that aligned well with my interests and career goals. 99

My time at Amrita gave me not just a strong technical foundation via theory classes, but also a deep sense of values and purpose along with practical implementation of the learnt subjects. The friendships, experienced faculties and their mentorship, and campus environment shaped who I am today. 99

M.Tech WNA 2013-15

Dilraj N M.Tech WNA 2011-13

Pursuing M.Tech in Wireless Networks and Applications at Amrita Vishwa Vidyapeetham was transformative, offering strong theoretical grounding and hands-on training in wireless communication, IoT, and network security. Supportive faculty and real-world projects enriched my technical and research skills.99

My experience in Amrita was very transformative as I was able to learn so much regarding my subject domain as well as I was able to work with some eminent personalities.99

Hariprasad K.M. M.Tech GEO 2022-24

Having heard about the remarkable work the university is doing in communication, healthcare, landslide research, and natural hazard mitigation, it was truly inspiring to witness the advanced lab setups designed to simulate landslides, characterize hazards, and develop effective mitigation strategies. The use of multiple independent strain gauges is commendable; however, the transition to optoelectronic sensors (fibre optic stress, strain, and temperature) promises a significant leap in data resolution, accuracy, and early detection capabilities. The healthcare projects and demonstrations are equally innovative and socially impactful—advancing rehabilitation, early diagnosis, and continuous monitoring for the benefit of society. Excellent work by the entire team. It is also hugely refreshing and uplifting to see the team mostly made up of women.

Dr. David Nicol.

Innovation Manager, Energy efficiency and sustainability University of Warwick

Amrita Center for Wireless Networks and Applications Amrita Vishwa Vidyapeetham Amritapuri Campus, Clappana PO Kollam – 690525, Kerala, INDIA

amrita.edu/awna